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Comparing these expressions with Table V, it is 
found that two of the "sum rules" valid for non-
identical atoms, Eqs. (4.21a) and (4.21c), do not 
hold in this case. All the other relations, Eqs. 
(4.20a), (4.20b), (4.21b), (4.21d), and (4.22), still are 
valid. 
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Exchange collisions between ground-state hydrogen atoms are considered. The density matrix after 
collision is calculated for pairs of atoms which initially had the same density matrix. The result is applied 
to the hydrogen maser with the assumption that only exchange collisions and the escape of atoms from the 
storage bulb influence the linewidth for the field-independent hyperfine transition. Under normal operating 
conditions a frequency shift of roughly 5% of the exchange collision contribution to the linewidth is 
predicted. 

1. INTRODUCTION 

THE effect of exchange collisions between ground-
state hydrogen atoms has been treated by a 

number of authors.1-6 In particular, Wittke and Dicke 
considered a case where departures from thermal equi­
librium were small and the only nonzero off-diagonal 
elements of the density matrix for the ground-state 
sublevels were those corresponding to the magnetic 
field-independent (F= l , MF=0) -> (F=0, MF=0) 
component of the hyperfine transition. The nuclear 
spins and all magnetic interaction energies can be 
neglected during collisions and the electron wave 
functions for the two colliding atoms can be combined 
to form triplet and singlet states. The effect of a 
collision is to multiply the triplet and singlet parts of 
the wave function by e~iAT and e~iAs respectively. 
AT is the integral of {ET/h) over the time of the 
collision, where ET is the triplet state hydrogen-
hydrogen interaction energy, and As is defined similarly. 
Wittke and Dicke made the approximation that only 
"strong" collisions were important, where "strong" 
collisions are those in which the relative phase shift 
A=Ar—As is large enough so that the relative phase 
after the collision can be considered random. 

In the present paper the approximations of strong 
collisions and of small departures from equilibrium are 
removed. The effect on the density matrix of a single 
hydrogen-hydrogen collision for each atom in the 

1 J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956). 
* J. P. Wittke, Thesis, Princeton University, 1955 (unpublished). 
3 E . M. Purcell and G. B. Field, Ap. J. 124, 542 (1956). 
4 A. Dalgarno, Proc. Roy. Soc. (London) A262, 132 (1961). 
6 A. F. Hildebrandt, F. B. Booth, and C. A. Barth, J. Chem. 

Phys. 31, 273 (1959). 
6 R. M. Mazo, J. Chem. Phys. 34, 169 (1961). 

sample is given in Sec. 2. The resulting effect on 
operation of the hydrogen maser7 is discussed in Sec. 3. 
The expected frequency shift is estimated in Sec. 4 
using straight-line paths with the triplet and singlet 
interaction potentials of Dalgarno and Lynn.4*8 A shift 
in the field-independent hyperfine transition of up to 
5% of the exchange collision contribution to the 
linewidth is predicted. 

2. EFFECT OF A SINGLE COLLISION WITH 
ARBITRARY PHASE SHIFT 

The initial 4X4 density matrix9 pl for the magnetic 
sublevels of ground-state hydrogen atoms is written in 
the F, MF representation: 

1,1 1,0 1 , -1 0,0 

a 
e 
f 
h 

e* 
b 
g 
j 

f* 
g* 
c 
k 

h* 
j * 
k* 
d 

(1) 

The 16X16 density matrix a{ for a pair of colliding 
atoms just before collision in the ~F\MFJ?<LMFI repre­
sentation is the direct product of pl with itself, a1 is 
transformed by a unitary transformation T to a repre­
sentation SMsIMi where the two electron spins and 

7 D . Kleppner, H. M. Goldenberg, and N. F. Ramsey, Phys. 
Rev. 126, 603 (1962). 

8 A. Dalgarno and N. Lynn, Proc. Phys. Soc. (London) A69, 
821 (1956). 

9 U. Fano, Rev. Mod. Phys. 29, 74 (1957); see also C. P. 
Slichter, Principles of Magnetic Resonance (Harper and Row, 
New York, 1963), Chap. 5. 
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TABLE I. Representation transformation matrix T — (SMsIMi \ FIMF1F2MF2)-

2155 

\F2MF2 
X 

SMSIM\ 

11,11 
11,10 
11,1 - 1 
11,00 

10,11 
10,10 
10,1 - 1 
10,00 

1 - 1 , 1 1 
1 - 1 , 1 0 
1 - 1 , 1 - 1 
1 - 1 , 0 0 

00,11 
00,10 
00,1 - 1 
00,00 

the two nuclear 

11, 
11 

1 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

11, 
10 

0 
1 
2 
0 
1 
1 
2 
0 
0 
0 

0 
0 
0 
0 

1 
2 
0 
0 
0 

11, 
1 - 1 

0 
0 
0 
0 

0 
h 
0 
1 
2 

0 
0 
0 
0 

0 
1 
2 
0 
i 

11, 
00 

0 
1 
2 
0 
1 
2 

1 
2 
0 
0 
0 

0 
0 
0 
0 

1 
-"2~ 

0 
0 
0 

spins are coupled: 

aei = ivr*. 

10, 
11 

0 
1 
2 
0 
1 

~ ~ 2 

1 
2 
0 
0 
0 

0 
0 
0 
0 

1 

0 
0 
0 

10, 
10 

0 
0 
1 
2 
0 

0 
1 
2 
0 
0 

1 
2 
0 
0 
0 

0 
0 
0 

_ 1 
2 

10, 
1 - 1 

0 
0 
0 
0 

0 
0 
1 
2 
0 

0 
1 
2 
0 
1 
2 

0 
0 
1 
2 
0 

(2) 

10, 
00 

0 
0 
1 

0 

0 
0 
0 
1 
2 

1 
2 
0 
0 
0 

0 
1 

— 2 
0 
0 

eiA. 

1 - 1 , 
11 

0 
0 
0 
0 

0 
1 
2 
0 
1 

—-2" 

0 
0 
0 
0 

0 
1 
2 
0 
1 
2 

We can 

1 - 1 , 
10 

0 
0 
0 
0 

0 
0 
1 
2 
0 

0 
1 
2 
0 
1 
2 

0 
0 

- * 
0 

1 - 1 , 
1 - 1 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
1 
0 

0 
0 
0 
0 

also write A 

A=l 

1 - 1 , 
00 

0 
0 
0 
0 

0 
0 
1 
2 
0 

0 
1 

— 2 
0 
1 
2 

0 
0 
1 
2 
0 

as follows 
r-(*/4)2* 

00, 
11 

0 
1 
2 
0 
1 

~~ 2 

1 
"2 
0 
0 
0 

0 
0 
0 
0 

1 

2 0 
0 
0 

00, 
10 

0 
0 
1 
2 0 

0 
0 
0 
1 
2 
1 

~ 2 
0 
0 
0 

0 
4 
0 
0 

00, 
1 - 1 

0 
0 
0 
0 

0 
0 
1 
2 0 

0 
1 

~~ 2 0 
1 

~2 

0 
0 
1 

0 

00, 
00 

0 
0 
1 
2 0 

0 
1 
2 0 
0 

1 
2 
0 
0 
0 

0 
0 
0 
i 

(4) 

The matrix T (see Wittke,2 Appendix 2) is reproduced 
in Table I. 

The effect of a collision yielding a phase shift A 
between the parts of the density matrix corresponding 
to triplet and singlet electron states can be given by a 
unitary transformation A : 

where x= (1 — eiA), B has all elements zero except the 
last four diagonal elements which are 4, and / is the 
identity matrix. Transforming back to thejFiMplF2MF2 

representation, 

<rf = T*Ar<riT*A*T: 

(r°f = A<reiA*. (3) 
['-©cH7-(7)4 

(5) 

A is diagonal and has unit diagonal elements except for 
the elements connecting 5=0 , Ms^O states, which are where C—T^BT is given in Table II. Since C* — C and 

TABLE II . Matrix C=r*J3r. 

\FiMFlt 
\F2MF2 

\ 
FIMFV F2MF2\ 

11,11 
11,10 
11,1 - 1 
11,00 

10,11 
10,10 
10,1 - 1 
10,00 

1 - 1 , 1 1 
1 - 1 , 1 0 
1 - 1 , 1 - 1 
1 - 1 , 0 0 

00,11 
00, 10 
0 0 , 1 - 1 
00,00 

11, 
11 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

11, 
10 

0 
+1 

0 
- 1 

- 1 
0 
0 
0 

0 
0 
0 
0 

+1 
0 
0 
0 

11, 
1 - 1 

0 
0 

+2 
0 

0 
- 1 

0 
- 1 

0 
0 
0 
0 

0 
+1 

0 
+1 

11, 
00 

0 
- 1 

0 
+1 
+1 

0 
0 
0 

0 
0 
0 
0 

- 1 
0 
0 
0 

10, 
11 

0 
- 1 

0 
+1 

+1 
0 
0 
0 

0 
0 
0 
0 

- 1 
0 
0 
0 

10, 
10 

0 
0 

- 1 
0 

0 
+1 

0 
0 

- 1 
0 
0 
0 

0 
0 
0 

- 1 

10, 
1 - 1 

0 
0 
0 
0 

0 
0 

+1 
0 

0 
- 1 

0 
- 1 

0 
0 

+1 
0 

10, 
00 

0 
0 

- 1 
0 

0 
0 
0 

+1 
-fl 

0 
0 
0 

0 
- 1 

0 
0 

1 - 1 , 
11 

0 
0 
0 
0 

0 
- 1 

0 
+1 
+2 

0 
0 
0 

0 
- 1 

0 
+1 

1 - 1 , 
10 

0 
0 
0 
0 

0 
0 

- 1 
0 

0 
+1 

0 
-fl 

0 
0 

- 1 
0 

1 - 1 , 
1 - 1 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

1 - 1 , 
00 

0 
0 
0 
0 

0 
0 

- 1 
0 

0 
-fl 

0 
-f l 

0 
0 

- 1 
0 

00, 
11 

0 
+1 

0 
- 1 

- 1 
0 
0 
0 

0 
0 
0 
0 

+1 
0 
0 
0 

00, 
10 

0 
0 

+1 
0 

0 
0 
0 

- 1 

- 1 
0 
0 
0 

0 
+1 

0 
0 

00, 
1 - 1 

0 
0 
0 
0 

0 
0 

-fl 
0 

0 
- 1 

0 
- 1 

0 
0 

+1 
0 

00, 
00 

0 
0 

+1 
0 

0 
- 1 

0 
0 

+1 
0 
0 
0 

0 
0 
0 

+1 

file:///F2MF2
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TABLE III . Density"matrix elements after collision with another hydrogen atom having the same initial density matrix. 

Pnf = a-i(l-

pdzf=c—i(l-

Pii-/ = f l 
.,/=<! 

-1(1-

P2iJ=e—J(l-

Ps2f=g~i(l-

p4lf=k-i(l-
P43/ = ^ - i ( l -

-cosA){2ac-i(b+d)2+\j\2}-ii(smA){eg*-ge*} 
.CosA){2b-a(l-a)--c(l-c)-Hb+dy--\j\*~(\e\*+\g\2 

•co$A){2ac-i(i>+dy-h\j\2}-H($mA){eg*-ge*} 

•co&A){e(b+d+2c)-g(b+d+2a)+jk*-hj*)-li(^ 
-cosA){2f-(e*+g*)~2hk*}-ii(smA){2f(c-a) + (e*-g*)} 
-cosA){g(b+d+2a)-e(b+d+2c)+hj*-jk*)-#(s^ 
-cosA){h(b+d^2c)-~j(e+g)}-H(smA){h(c-d)+fk-gj} 
-cosA){j-k(e+g)-h(e*+g*)}-li(smA){j(b-d)-ek-hg*} 
•cosA){k(b+d+2a)-j(e*+g*)}-ii(sinA){k(a-d)+hf*-je*} 

2-\k\*)-(eg*+ge*)}-H(smA){-2(eg*-ge*)} 

|x |2=2(l-cosA), 

cr'= <r*~ i (1 - cosA) (CV'-fVC- IC^C) 
-ii(sinA)(aiC-Cai). (6) 

Ignoring the correlation between the atoms which have 
just collided, the elements of the final 4X4 density 
matrix pft for all atoms in the sample which underwent 
collisions at time t are given by a partial contraction of 
af with respect to F and MF for one of the two atoms: 

pft(F2MF2,F2'MF2') = £ 8 GFiFi')S (AT Flilf Fl') 
i?'lJM>li<Ti'iW>l' 

Xv'iFMHFiMrnFi'MFWMrt'). (7) 

We now average over the times at which collisions 
occur and call the resulting^ final density matrix pf. 
Each density matrix element has associated with it a 
frequency corresponding to the energy difference of the 
two states connected by that element. If an element of 
pft contains an element of cr* having a frequency 
different by an amount large compared with the re­
ciprocal of the averaging time, then the contribution 
to pf will be zero. Thus we can break up <J1 into terms 
having different frequency dependences, 

ai=ai(0)+(ri(o)1)+ai(cc2)+ • (8) 

and only the contribution of o-*(o>n) to the corresponding 
elements of (rf(o)n) and thereby p/(con) should be 
included. 

With the above prescription and Eqs. (6) and (7), 
we can now calculate pf in terms of p\ We assume the 
low field case where the two Zeeman frequencies are 
equal but all other frequencies are quite different. The 
results for pf are given in Table III. The phase shift 
in p42

7 is particularly significant, since this corresponds 
to a small frequency shift in the magnetic-field-inde­
pendent hypernne component whose frequency COR- can 
be measured precisely in the hydrogen maser. 

3. APPLICATION TO THE HYDROGEN MASER 

The rate of change of the density matrix for hydrogen 
atoms in a hydrogen maser7 can be written as the sum 

of three terms: 

\dt/ \dt /flow \dt /exchange \dt / radiation 

Here the flow term corresponds to atoms entering and 
leaving the storage bulb, the exchange term represents 
exchange collisions between hydrogen atoms, and the 
radiation term involves the effects of a microwave 
field capable of producing transitions between the (1,0) 
and (0,0) states. The effect of the energy separation 
between the levels is included in the radiation term. 
Possible line broadening and frequency shifts due to 
collisions with the walls or anything else except exchange 
collisions with hydrogen atoms are not included and 
we assume that the only off-diagonal elements of the 
density matrix are those corresponding to the desired 
hyperfine transition component. 

We take the flow term with the same ordering of 
states as in Eq. (1) to be 

\dt / now 

0 

-rp, (10) 

where r corresponds to the rate at which hydrogen 
atoms flow into and out of the storage bulb. We have 
assumed that only atoms in the (1,1) and (1,0) states 
are passed by the state selector. Here (1/V) is the mean 
time that atoms spend in the bulb. 

The exchange term is given approximately by: 

\dt/( 

• 2Trnvr 

exchange if 
L.J 0 

{P-pflA(R)l)RdR \, (11) 

where n is the number of hydrogen atoms per cm3 and 
vTe\ is the mean relative velocity. pf[A(R)J is the density 
matrix for an atom after an exchange collision with 
impact parameter R and relative velocity vTei with 
another atom also having the initial density matrix p. 
The elements of (p—p'|[A]]) in terms of the elements of 
p may be obtained from Table III. 
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The nonzero elements of the radiation term can most 
easily be obtained from the equations of time-dependent 
perturbation theory for an undisturbed atom: 

d2= —i(a)o/2)a2-il3e-iu}tai, 

d 4 = i (a>o/2)a4—i/3eio,ta2. 

a2 and a4 correspond to the (1,0) and (0,0) levels, 
respectively, and coo is the unperturbed transition 
frequency between these two levels. The nonzero matrix 
elements of the term in the Hamiltonian giving the 
effect of an oscillating magnetic field near this transition 
frequency are taken to be 

HAi^We-*"*, H2i=HAf, (13) 

where fi is real. The oppositely rotating terms in the 
matrix elements have been omitted since they are 
unimportant for weak oscillating fields. The results are 

(d/dt) (#402*) = d 4 a 2 * + ^ 4 d 2 * = icO0tZ4^2* 

- ^ ( | a 2 | 2 - | a 4 | 2 ) ^ S (14) 

(d/dt) | a212= - (d/dt) | a412= 2p Im&^e'™*). 

This gives for the density matrix: 

(d/dt)(p42)xaa=io)QPi2—i@(p22—pu)eiut, (15) 
(d/dt)(p22)rad:= ~ (d/dt) (pu)izd 

= 2/3Im(p42r-*w0. (16) 

From Eq. (9) and Table I I I we have: 

d(p42)/dt=—rp42—l{U+iV(p22—pu)}p42 
+io)0p42-ip(p22-pu)eio}t, (17) 

d(p22—pu)/dt=%r— (p22—pu)r—^U (p22—Pu) 

+4/3 Im(p 4 2 e - -0 , (W 
where 

U=2Tnvrel [l-cosA(R)~]RdR, 

V=2Ttivrel / [sinA(R)~]RdR. 
Jo 

These equations have a quasistationary solution 
obtained by setting 

(d/dt)(Pmm) = 0, P42=fc<wl. (20) 

This solution is: 

5==-i/3(p22-p44)/C^+i(co-co ,)] J (21) 

(P22-P44)={2+(*7A) 
+ ( 8 ^ i r / r ) / [ ^ + ( c o - c o 0 2 ] } - 1 , (22) 

where 

K=r+lU, (23) 

w'=coo—j (p22—p44) V. (24) 

The rate of emission per atom is given by 

d 
— (p22)rad 
dt 

2p2K 
= . (25) 

{[X 2 + (co-co')2][2+ ( t f / r ) ] + (WK/r)} 

From the above expression the stimulated emission 
is maximum for co = a/. The frequency shift due to 
exchange collisions is thus given by Eq. (24). At low 
power levels the full linewidth at half-power is 

Aco=2Z. (26) 

The ratio of the frequency shift to the part of the 
linewidth due to exchange collisions is then 

W/U)[\+{U/2r)J-\ (27) 

Alternately, the ratio of the frequency shift to the 
limiting linewidth for low hydrogen density is 

UV/U)l(U/2r)ytl+(U/2r)l. (28) 

4. ESTIMATE OF PARAMETERS FOR HYDROGEN-
HYDROGEN COLLISIONS 

Given initially that the electron spin for atom 1 is 
+ | and for atom 2 is — J, the exchange cross section 
a-ex is associated with the probability that if we make 
a measurement at a later time we will find —J for the 
electron spin of atom 1. In this paper we use the term 
"exchange collision'' more generally to mean an 
encounter in which an appreciable phase shift between 
the triplet and singlet parts of the electron wave 
function occurs, even though the electron spin is not 
measured after the encounter and therefore we cannot 
say whether exchange actually occurred. In fact, 
measuring the electron spin shortly after the encounter 
would force the phase difference to be a multiple of TT 
and would thereby remove the possibility of obtaining 
a frequency shift. 

The most recent work on the triplet and singlet 
potentials between two hydrogen atoms in their ground 
states is that of Dalgarno and Lynn.4 '8 The difference 
between the triplet and singlet energies can be ade­
quately represented from 4a0 to 12ao by4 

8(r) = 6.S7r2e~kr, (29) 

where r is the distance between the atoms in units of #o, 
&= 1.974, and 5 is in rydbergs. Integrating [_R^chb(r)/h} 
over a straight-line path with impact parameter R to 
obtain the triplet phase shift minus the singlet phase 
shift: 

A(2J)=(6.87)(4iraoci2coArei) 

X f (x2+R2)e-k^R2)mdx. (30) 
J Q 
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E x p a n d i n g (x2-\-R2)1/2 gives : 

(x2+R2)e~k^^B2^2dx / 
J 0 

r 
R I e—(kx 
Jo 

— R2e-kR J p-(kxV2R) 
1 0 

' x2 /kR\x4 

1+-+( — ) -

/kR\x* 

\16/R6 + • dx 

= (TrR/2k)1t2R2e-kRtl+ (kR^+^kR)-1 

-M(^)"2+---]. (3D 

Since kR^ 13 when A(R)^ 1, we keep only the first term. 
Setting vre\=-\/2v, where v is the mean speed, we have: 

with 
A(R)~KR5/2e-kR, 

# = (13.74)7r3/2(aoci^)&~" 

(32) 

(33) 

At 300°K, £= 2.51 X105 cm/sec and K= 3.78X 103. This 
gives A^d at i£=6.55, and A ranges approximately 
from 0.003 at R= 10 to 45 at # = 4 . 

Using Eq. (32) for A(R), we find: 

[FMrei] = 2waQ
2 / R(smb)dR 
Jo 

/*°° R /sinA\ 
~2<7ra0

2 f )dA. (34) 
Jo [*-(2.S/X)]\ A / 

By numerical integration up to A (4), using the fact 
that the first factor under the integral is slowly varying, 
and ignoring the remainder of the integral: 

[F/^rei]^^137ra0
2. (35) 

Similarly, ignoring cosA for R up to 4 and making the 
transformation of Eq. (34) for the rest of the interval, 

[t//^ r ei]^48xa0
2=42X10-16 cm2. (36) 

Thus the straight-line path approximation gives (V/U) 
-0.27. 

Since (\/2)[U/nvve\] is the exchange cross sec­
tion, Eq. (36) is equivalent to <rex^21X10~16 cm2, 
in agreement with Dalgarno's result.4 Wittke and 
Dicke1 found crex=23X10~16 cm2 using somewhat 
different potentials and assuming that the phase-shift 
difference is random if the singlet part of the wave 
function experiences a close collision by overcoming the 
centrifugal potential barrier and is zero otherwise. 
Purcell and Field3 made essentially the same assumption 
as Wittke and Dicke and found a strong collision cross 
section at 300°K which can be converted to o-ex^22 
X10~16 cm2. Mazo6 used the experimental linewidth 
data of Hildebrandt, Booth, and Barth5 to obtain an 
experimental exchange cross section at 325 °K of o-ex 
= 28.5X10~16 cm2. Since the assumptions of Wittke 
and Dicke, of Purcell and Field, and of Dalgarno all 
may tend to underestimate the cross section, there is 
no significant indication that the potentials are inade­
quate. A complete treatment of the exchange line 
broadening and frequency shift can be obtained from 
the method of Baranger.10-11 For the present purposes 
we will use the straight-line path value of V and a 
value of U deduced from the experimental exchange 
cross section to give an estimated value of 0.2 for (V/U). 

5. CONCLUSION 

From Sees. 3 and 4 the estimated maximum frequency 
shift as a function of hydrogen density for the (1,0) —> 
(0,0) transition is about 1% of the linewidth and 
should thus be observable. Under normal hydrogen 
maser operating conditions, where the exchange 
broadening is considerably less than the transit time 
broadening, the shift will be roughly 5% of that part 
of the linewidth due exchange broadening. While the 
shift is small, it is of interest both because of the 
high potential long term stability of hydrogen masers 
and because of the information the shift can give us 
about the interaction potentials. The size of the shift 
is related to the logarithmic derivative of the potential 
difference curve near the strong collision radius. Similar 
shifts occur for magnetic-field-dependent transitions, 
but these would be much harder to observe. The ratio 
of shift to exchange broadening may be even larger for 
alkali atoms than for hydrogen. 

10 M. Baranger, Phys. Rev. 112, 855 (1958). 
11 P. L. Bender (to be published). 


